
Query Optimization Strategies in Distributed
Databases

Shyam Padia, Sushant Khulge, Akhilesh Gupta, Parth Khadilikar

Computer Science Department, Mumbai University

Mumbai, India

Abstract- The query optimization problem in Local Processing Phase: In this phase, the initial

large-scale distributed databases is NP-hard in Algebraic Query specified on global relations is

nature and difficult to solve. The complexity of the
optimizer increases as the number of relations and

transformed in to fragments (Data Decomposition)
and made available to the respective sites for
processing (Data Localization) like local selections

number of joins in a query increases. Research is and projections.
being carried out to find an appropriate algorithm
to seek an optimal solution especially when the size Reduction Phase: A sequence of Joins and Semi
of the database increases. Various Optimization Joins (reducers) are used to minimize the amount of

Strategies have been reviewed in this paper and the
studies show that the performance of distributed

data i.e. the size of the relations that needs to be
transmitted in order to accomplish a join operation
in a cost effective manner.

query optimization is improved when
Optimization Algorithm is integrated
optimization algorithms.

Keywords: Query Execution Plan,

Ant Colony
with other

Distributed

Final Processing or Assembly Phase: In this phase
all the processed files are transmitted to the
assembly site for the generation of final output.

Database, Ant Colony Algorithm, Search Strategies

1. INTRODUCTION

With the launch of high speed communication
networks, significant research is devoted to
developing highly efficient techniques for
processing complex queries in a cost effective
manner in a Distributed Database Environment. A
Distributed Database is a collection
interrelated database distributed over
network so as to improve the

of logically
a computer

performance,
reliability, availability and modularity of the
distributed systems. Query processing is much more
difficult in Distributed Environments than in
Centralized Environments. Since the data is
geographically distributed onto multiple sites, the
processing of query involves transmission of data

Fig1. Distributed Query Optimization Model [4].

among different sites. The retrieval of data from The performance of a distributed query is critically
different sites is known as Distributed Query
Processing (DQP). The query processor selects data
from databases located at multiple sites in a network

dependent upon the ability of the query optimizer to
derive efficient query processing strategies [2].
Query Optimization is one of the most important

and performs processing over multi le CPUs to and expensive stages in executing distributed
achieve a single query result set. There are three
phases involved in Distributed Query Processing
[1][9][10][12]:

queries. The complexity of the optimization process
is determined by the number of relations referenced,
types of initial query access methods and the set of

Shyam Padia et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (5) , 2015, 4228-4234

www.ijcsit.com 4228

ISSN:0975-9646

rules involved for generating possible query trees or
query graphs.

Once the query, entered by the user, is transformed
into a standard relational algebra form, the optimizer
searches for an optimal query execution plan [3].
The number of possible alternative query plans
increases exponentially with increase in the number
of relations required for processing the query. The
query optimizer needs to explore the large search
space for generating optimal query plans. The query
optimization problem in large-scale distributed
databases is NP-hard [9] [15] in nature and difficult
to solve as exploring all the query plans in this large
search space is not feasible. This problem in
Distributed Databases is a Combinatorial
Optimization problem and has been addressed by
various techniques like simulated annealing,
iterative improvement, two-phase optimization,
Deterministic, Greedy and Heuristic Algorithms to
find an optimal solution by taking the time and cost
complexity of executing these queries into
consideration [4] [5].

In this paper an attempt has been made to study the
various Search Strategies that can be implemented
to determine Optimal Query Execution Plans in the
processing of Distributed Queries. The remainder of
this study is as follows. Section 2 discusses the
components of Distributed Query Optimization. In
Section 3, various Solution Algorithms that have
been applied by scientist for query optimization are
discussed and finally section 4 concludes the
research paper and provides scope for future studies.

2. COMPONENTS OF DISTRIBUTED QUERY

OPTIMIZATION

Query optimization is a difficult task in Distributed
Environment because of numerous factors like data
allocation, speed of communication channel,
indexing, availability of memory, size of the
database, storage of intermediate result, pipelining
and size of data transmission [6]. The role of Query
Optimizer is to produce Query Execution Plans
(QEP) which represents an execution strategy of the
query with minimum cost. An optimizer is a
software module that performs optimization of
queries on the basis of three important components
of a query i.e. Search Space, Search Strategies and
Cost Models.

2.1 Search Space

It refers to the generation of sets of alternative and
equivalent QEPs of an input query by applying
Transformational Rules such that they differ in the
execution order of the operators [7]. The QEPs are
commonly referred to as Operator Trees or Join
Trees whose operators are various types of Joins or
Cartesian Products. This can be represented as a
query graph (annotated tree) denoted as G = (N,A)
where N is the set of nodes(vertices) in the Query
Graph and A is the set of arcs (edges) [2][8]. Each
node represents a set of Base File (BF) in the join
specification of the query. Two nodes are connected
by an arc if the query joins the two corresponding
files. Each node in the query graph has an
associated site set. These leaf nodes represent file
materializations resulting from local processing and
it is a reduced file. The root node represents the final
step where the query result is generated. Each parent
node uses the result files of its children as its inputs.

For example, file BF0 is stored at sites S1 and S2; file
BF1 at site S3; file BF2 at site S4; and file BF3 at sites
S3 and S4. Consider a query that joins a sequence of
four files, referenced BF0 through BF3. Join
attributes are designated A0 through A2 (i.e. four files
are joined using three join operations). In SQL this
query is specified as:
select A1, <non-join projection attribute list>
from BF0, BF1, BF2, BF3

where BF0.A0 = BF1.A0 and BF1.A1 = BF2.A1 and
BF2.A2 = BF3.A2

The query graph for the distributed query,
augmented with the site set for each file, is shown
below.

Fig 2. Query Graph for Distributed Query [11]

Since a query graph is a complicated query tree
modeling various join operations, the QEP for the
given query can be represented as follows:

Shyam Padia et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (5) , 2015, 4228-4234

www.ijcsit.com 4229

Trees.

Fig 4. Shapes of Query Join Graphs [15]

Fig 3. Query Execution Plan for above Query [8]

In a Distributed Database Query involving many
relations and many joins, the number of QEP
increases exponentially because of the Associative
and Commutative property of the Join Operation.
(O (N!) where N is the number of relations). The
query optimizer needs to explore the large search
space for generating optimal query plans.

The task of Query Optimizer is to [9][15]:
a) Determine the Order of Execution of Join

Operation.
b) Determine the Join Operation Access Methods.
c) Determine the shape of the Join Query Graph in

the given search space by implementing the
appropriate search strategy such that the
performance measure of the resulting Query
Execution Plan is optimized. It can be Linear
Trees (Left Deep Trees), Right Deep trees,
Bushy Join Trees, Binary Trees or Zig-Zag

d) Determine the order of data movements between
the sites (Join Sites) so as to reduce the amount
of data and cost on the communication network.

To explore all the query plans in this large search
space various Search Strategies have been
researched upon to find optimal plans.

2.2 Search Strategy

It refers to the algorithms applied to explore the
search space and determine the best Query
Execution Plan (QEP) based on Join Selectivity and
Join Sites so as to reduce the cost of query
optimization. There are basically two classes of
strategies that solve the problem of Join Scheduling
[5] for Query Optimization.

The first approach is Deterministic Strategy that
proceeds by building plans, starting from base
relations, joining one or more relations at each step
till complete plans are obtained. To reduce the
optimization cost, the plans that do not lead to
optimal solutions are pruned [2]. The Dynamic
Programming builds all such plans using Breadth-
first search while Greedy Algorithms uses depth-
first search.

The other approach is Randomized Strategies
[11][17] that search the optimal solution around
some particular points. These strategies do not
guarantee optimal plan but they avoid high cost of
optimization in terms of memory and time
consumption. Iterative Improvement and Simulated
Annealing are common solution algorithms under
these strategies.

One of the difficulties faced by the researchers in
this area is tractability. The solution space grows
exponentially when the number of relations and
distributed data storage sites increases. The ability
of the optimizer to address the issues of Join Order,
Join Method, query data size reduction and

Shyam Padia et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (5) , 2015, 4228-4234

www.ijcsit.com 4230

reduction in the cost of the query is an extremely
difficult task.

However, Evolutionary Algorithms like Ant Colony
Optimization, Genetic Algorithms and Particle
Swarm Optimization are now being studied to find
optimal and suboptimal solution for the large join
queries in the given search space that are processed
by Relational and Distributed Databases. These
algorithms are particularly successful because of
their global searching capability, robust nature and
their ability to handle different combinatorial
optimization problems. The various types of search
strategies have been discussed in detail in section 3.

2.3 Cost Model

The Objective of Query Optimization in Distributed
Database Environment is to minimize the total cost
of computer resources. An optimizer cost model
includes cost functions to predict the cost of
operators and formulas to evaluate the sizes of the
results [16]. The cost function can be expressed with
respect to either total time or response time. The
total time is inclusive of Local Processing Cost
(CPU Time + I/O Cost), Communication Cost
(Fixed time to initiate a message
+ Time to transmit a data). Minimizing the total
time implies that the utilization of resources
increases thus increasing the system throughput. The
Response Time is evaluated as the time elapsed
between initiation and completion of a query
including parallelism. In parallel transferring, the
response time is minimized by increasing the degree
of parallel execution [11].

Primarily, the cost of a query depends on the size of
intermediate relation that are produced during
execution and which must be transmitted over a
network for a query operation at a different site. The
emphasis is on the estimation of the size of the
intermediate relations based on Join Orders and Join
Methods so as to reduce the amount of data transfers
and hence decrease the total cost and total time of
the distributed query execution.

3. Solution Algorithms

The central component of a query optimizer is its
Search Strategy or Enumeration Algorithm. In this
section, the research on Query Optimization
Techniques based on a number of Optimization
Algorithms used in Distributed Database Queries is
explored.

One of the early Distributed Database System was
SDD-1 which was designed for slow wide area
network and made use of semi joins to reduce the
communication cost by generating static
unchangeable query plans without considering the
horizontal or vertical data fragments of distributed
database [13]. The R* system used by DDB query
optimizer also generated static unchangeable query
in faster networks but they neither employed semi
joins nor handled horizontal or vertical
fragmentation [21]. Distributed–INGRES [2] was
able to generate dynamic QEP at run-time on faster
communication networks. Semi Join for the
reduction of query size was not used but the system
was able to handle horizontal fragmentation without
replication.

Significant amount of work has been carried out on
generating optimal solutions for Join Order of the
query. The Randomized strategies [18] definitely
reduce the cost of the query optimization but they
have a constant space overhead issue and are slower
than heuristics. Deterministic Strategies [19]
generate runtime Dynamic solutions but they have
exponential time and space complexity associated
with them when the numbers of relations increases
in the distributed query. The Two-Phase
Optimization Algorithm [20] is a combination of
Iterative Improvement and Simulated Annealing. It
performs a random walk along different solutions of
search space, generates an optimal solution but
increases the space overhead of query optimization.
A dynamic programming based solution procedure
to minimize the sum of communication cost and
local processing cost by optimally determining Join
Order and Join Methods (nested-loop or sort-merge)
and Join Sites was also proposed by scientist.
However they assumed data to be stored non-
redundantly [21][22]. Chen and Yu proposed a
heuristic algorithm that determined the Join Order
and Join Sites with an assumption that file copies
are pre-selected when multiple copies exists [14].

A lot of research focused on the reduction phase of
the distributed query processing where the objective
is to find a minimum cost semi join sequence that
fully reduces the files referenced by the query. This
is achieved by applying join predicates in a query
plan in order to reduce the size of the intermediate
query results thus reducing the cost of the operation.
An algorithm based on Dynamic Programming that
identified beneficial semi joins and determined Join
Order and Join Sites was worked upon by scientist
[23]. Two new concepts in the reduction phase of
Distributed Database: Gainful Semi joins and pure

Shyam Padia et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (5) , 2015, 4228-4234

www.ijcsit.com 4231

join attributes [24] was also proposed. Mi Xifieng
and Fan designed a new algorithm based on the
commonly used optimization algorithms to
significantly reduce the amount of intermediate data
and network communication cost and to improve the
optimization efficiency [25].

Since Dynamic Programming is not a feasible
solution optimization of Distributed Queries because
of its large space complexity and complicated
objective functions, new set of techniques like
Genetic Algorithm, Ant Colony Optimization
Algorithm and Hybrids of various Evolutionary
Algorithms are now being explored for solutions to
Distributed Queries.

Genetic Algorithms are a family of Computational
models inspired by nature or Biological Evolutions.
The concept of GA was proposed by John Holland
where randomly generated solutions to a problem
are evaluated as chromosomes and these
chromosomes are allowed to produce new set of
individuals or children with better characteristics via
crossover and mutations operators based on fitness
function [28]. The algorithm was also able to reduce
the cost of the distributed query tree.

Ant Colony Optimization Algorithm (ACO) is a
novel meta-heuristic algorithm which is suitable for
problems related to Combinatorial Optimization.
Like query optimization in distributed database
because of its characteristics like intelligent search
techniques, global optimization, robust, distributed
computing and ability to combine with other
heuristics [31]. ACO was first proposed by three
Italian scholars, Dorigo M, Colorni A and Maniezzo
V in 1992.It is a Bionic Optimization Algorithm
inspired by Ants that uses probabilistic technique for
solving computational problems. It is built on the
mechanism of positive feedback, so it is very robust,
provides intelligent search and can be used for
Global Optimization Solutions [32].
Inspite of Ant Colony Optimization Algorithm
having special characteristics like distributed
computing, robust nature and positive feedback
mechanism, ACO has some deficiencies:
a) The initial formation needed by ACO has no

systematic way of startup.
b) The convergence speed of ACO is lower at the

beginning for there is only a little pheromone
difference on the path at that time but the
convergence speed increases towards optimum
answer because of positive feedback
mechanism.

In [11], the scientist proposed a new GA based
query optimizer called NGA that improves a given
QEP by considering Join Order, Join Site and Semi
join reducers. The algorithm was able to reduce the
Local Processing Cost and Network Communication
Cost by using new values for mutation and
crossovers and outperformed Exhaustive Search.
The potential of Genetic Algorithm to optimize
distributed queries on the problem of fully reducing
all the tables in a tree structured data model query
was also worked upon [26]. A combination
algorithm of Genetic Algorithm and Learning
Automata [27] for producing optimal Query
Execution Plans on the basis of the Join Order
Execution and Join Site Selection in distributed
database was also proposed by the scientist. In [28],
author proposed a combination of GA and
Heuristics for solving Join Ordering Problems as
Travelling Salesman Problem in Large Scale
Database and the computational experiments proved
it to be a viable solution for Distributed Systems
also. Hybrid of GA and Best-Worst Ant Colony
Optimization (BWACO) [29] was implemented to
find out the optimal Query Execution Plan and Join
Order by reducing Query Execution Time for Multi-
Join Query Optimization in Database. The algorithm
implemented positive feedback mechanism of ACO
with global search capability of GA. Another Hybrid
of GA and ACO [30] was implemented on Join
Ordering problem in Databases (only nested loop
joins considered) by overcoming the shortcomings
of both the algorithms. The algorithm adopts
Genetic Algorithm to give pheromone to distribute.
And then it makes use of ant colony algorithm to
give the precision of the solution.

The capability of Hybrid GA-ACO to search
extensive amplitude to answers for join queries in
relational Database can be extended to optimize the
join queries in distributed database where the most
important challenge is to generate the best QEP for
optimal results. Rho et.al [8] proposed a Genetic
Algorithm based solution procedure to quickly
determine optimal QEP. This model includes Copy
Identification (redundancy of data), Beneficial Semi
joins identification, Join Site Selection, Join Order
Execution, and Local Processing Cost and
Communication Cost.

Shyam Padia et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (5) , 2015, 4228-4234

www.ijcsit.com 4232

Figure 5. Diagram for Hybrid GA-ACO [30]

Tansel et.al. [33] proposed DP-ACO (Dynamic
Programming- Ant Colony Optimization) algorithm
for the optimization of multi way chain equijoin
queries in Distributed Database Environment.
Dynamic Programming suffers from long execution
times and very large memory requirements as the
size of the relations and number of joins increases in
the query. DP-ACO have proved to be viable
solution by producing good execution plans with 15
way join queries within limited time and very
limited memory space. Another advantage of DP-
ACO is that is that they can be easily adapted to
existing query optimizers that commonly use DP-
based algorithms.

By use of the properties of Ant Colony Algorithm
and Particle Swarm Optimization, a hybrid
algorithm is proposed to solve the traveling
salesman problems [35]. The algorithm first adopts
statistics method to get several initial better
solutions and in accordance with them, gives
information pheromone to distribute. Then it makes
use of the ant colony algorithm to get several
solutions through information pheromone
accumulation and renewal. Finally, by using across
and mutation operation of particle swarm
optimization, the effective solutions are obtained.
The Hybrid Algorithm of ACO-PSO has proved to
be effective.

With the increasing number of relations in a query,
much use of memory and processing is needed.
DDBMS is now being used as a standard DBMS in
all commercial applications which involve data from
various sites. The path marking the behavior of ants
is applied to direct the ants towards the unexplored
areas of search space and visit all the nodes without
knowing the graphic topology for generation of
optimal solutions of distributed database queries.
These ants calculate the running times of the
execution plans of the given query and provide
quick, high performance and optimal results in a
cost effective manner.

The Search strategy adopted by the Query Optimizer
in Distributed Database Management System can
help to reduce the query execution time and the cost
incurred on the query and hence increases
performance of a query by selecting the best Query
Execution Plan. The implementations of these
probabilistic algorithms have proved to generate
viable solutions when the size of the query and the
number of joins in the query grows.

CONCLUSION
The realization of hybrids of Ant Colony
Optimization Algorithm towards the optimization of
distributed database queries is still a novice field.
Research in the creation and implementation of
hybrids of ACO to solve various types of
optimization problems are in progress. The results
proved that hybrids of ACO are effective and viable
in optimization problems. Research has shown that
the implementations of these probabilistic
algorithms have proved to generate viable solutions
in distributed as well as relational database
management system when the size of the query and
the number of joins in the query grows. There is still
a lot of opportunity to generate optimized solutions
and to refine search strategies using hybrids of ACO
for the Queries in Distributed Database especially
when the size and complexity of the relations
increases with a number of parameters influencing
the query.

REFERENCES

[1] C.Yu, Z M Ozoyoglu, K. Kam,” Optimization of Distributed
Tree Queries”, J.Comput. Sys. Sci, Vol 29, No 3, pp 409-445,
1984.

[2] S.Ceri, G. Pologatti, “Distributed Database Principles and

Systems”, Mc GrawHill.

[3] A. Hameurlain, F. Morvan, “Evolution of Query Optimization

Methods”, Trans. on Large Scale Data and Knowledge Cent.
Syst.I, LNCS 5740, pp211-242, 2009.

[4] R. Ghaemi, AM Fard, Md. NB Sulaiman, “ Towards Optimal

Query Execution in Data Grids”, Advanced Technologies, pp
57-72, 2005.

[5] A. Aljanaby, E. Abuelrub, M.Odeh, “A Survey of Distributed

Query Optimization”, The International Arab Journal of
Information Technology, Vo2, No.1, 2005.

[6] Craig S. Mullins, “Distributed Query Optimization”, Technical

Support 2006.

[7] D.Abdullah, “Query Optimization in Distributed

Databases”,

[8] S. Rho, T. March, “ Optimizing Distributed Joins Queries: A

Genetic Approach”, Annels, of Operations Research, Science
Publishers, pp 199-288,
1997.

Shyam Padia et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (5) , 2015, 4228-4234

www.ijcsit.com 4233

[9] M.Chen, P.Yu, “Using Join Operations as Reducers in

Distributed Query Processing”, Proceedings of 2nd Intl. Symp.
on Databases in Parallel and Distributed System, July 1990.

[10] PMG Apers, AR Henver, SB Yao, “Optimization Algorithms
for Distributed Queries”, IEE Transactions on Software
Engineering, Vol. 9, no.1, pp 57-68, January 1983.

[11] E. Sevinc, A. Cosar, “An Evolutionary Genetic Algorithm for
Optimization of Distributed Database Queries”,The Computer
Journal, Vol. 54, No.8, 2011.

[12] C.Wang, M.Chen, “On Complexity of Distributed Query
Optimization”, IEEE Transactions on Knowledge and Data
Engineering, Vol. 8, No. 4, August 1996.

[13] PA Bernstein, N Goodman, E.Wong, C. Reeve, “Query
Processing in a System for Distributed Database (SDD-1)”,
ACM Trans. Database Sys., Vol. 6, No. 4, pp 602-625,
December 1981.

[14] MS Chen, PS Yu, “Interleaving Join Sequence with Semijoins
in Distributed Query Processing”, IEEE Transactions, Issue 5,
Vol. 3, August 2005.

[15] S. Pramanik, D. Vineyard, “Optimizing Join Queries in
Distributed Database” IEEE Trans, Software Engg. Vol. 14, pp
1391-1426, September 1988.

[16] D. Sukheja, Umesh kr. Singh, “ A Novel Approach of Query
Optimization for Distributed Database System”, IJCSI, Vol. 8,
Issue 4, No. 1, July 2011.

[17] AN Swami, A. Gupta, “Optimization of Large Join Queries in
Distributed Database”, Proc. of ACM-SIGMOD Conference on
Management of Data, pp 8-17, 1988.

[18] YC Kang, “Randomized Algorithms for Query Optimization”,
PhD Thesis, University of Wisconsin-Madison, 1991,
Technical Report # 1053.

[19] M. Hussein, F. Morvan, A. Hameurlain, “Dynamic Query

Optimization”, 19th Intl. Conf. on Parallel and Distributed
Computing Systems, ISCA, 2009.

[20] D. Kossman, “The State of Art in Distributed Query
Processing”, ACM Computing Survey, pp 422-469, 2000.

[21] LF Lohman, GM Mackert, “R* Optimizer Validation and

Performance Evaluation for Distributed Queries”, Proc. of 12th

Intl. Conf. on VLDB, pp 149-159, 1986.

[22] D. Kossman, K. Stocker, “Iterative Dynamic Programming: A
New Class of Query Optimization Algorithm”, ACM
Transactions on Database Systems, 2000.

[23] La Fortune, Wong, “ Query
Optimization>>>>

[24] M. Chen, P.Yu, “Combining Join and Semi Join Operations for
Distributed Query Processing”, IEEE Transactions on
Knowledge and Data Engineering., Vol. 5, No. 3, 1993.

[25] M. Xifeng, F.Yuanyuan, “Distributed Database System Query
Optimization Algorithm Research”, IEEE Intl. Conf. on
Computer Science and Information Technology”, Vol.8, pp 657-
660, 2010.

 [26] M. Gregory, “Genetic Algorithm Optimization of Distributed
Database Queries”, IEEE World Congress on Computational
Intelligence, pp 271-276, 1998.

[27] M. Naohoghdem, “ Query Optimization in Distributed Database
using Hybrid Evolutionary Algorithm, Intl. Conf. on
Information retrieval and Knowledge Management, pp 125-130,
2010.

[28] Z. Zhou, “Using Heuristics and Genetic Algorithms for Large
Scale Database Query Optimization”, Journal of Information
and Computing Science, Vol.2, No. 4, 2007.

[29] Y. Zhou, W.Wan, J. Liu, “Multi-Joint Query Optimization of
Database Based on the Integration of Best-Worst Ant
Algorithm and genetic Algorithm”, Wireless Mobile Computing
(CCWMC 2009), IET Intl. Communication Conference, pp 543,
2009.

[30] H. Kadhkhodaei, F. Mahmoudi, “A Combination Method
for Joining Ordering Problem in Relational Database
using Genetic Algorithm and Ant Colony”, IEEE Trans. On
Granular Computing, pp 312-317, 2011.

[31] Enxiu Chen1 and Xiyu Liu, “Ant Colony Optimization -
Methods and Applications-Multi-Colony Ant Algorithm”,
Google Scholar, 2011, http://cdn.intechweb.org/pdfs/13584.pdf

[32] Marco Dorigo, Mauro Birattari, and Thomas Suiitzle, “Ant
Colony Optimization- Artificial Ants as a
Computational Intelligence Technique”, IEEE Computational
Intelligence Magazine, November 2006.

[33] Zar Chi Su Su Hlaing, May Aye Khine , “An Ant Colony
Optimization Algorithm for Solving Traveling Salesman
Problem”, International Conference on Information
Communication and Management, Singapore, IPCSIT vol.16
(2011), IACSIT Press.

[34] Tansel Dokeroglu, Ahmet Cosar, “Dynamic Programming with
Ant Colony Optimization Metaheuristic for optimization of
Distributed Database Queries”, ISCIS:26th International
Symposium on Computer and Information Sciences, IEEE, Vol
2 , pp.107-113, 2011

[35] Gao Shang' 2, Jiang Xin-zil, Tang Kezong', Yang Jingyu,
“Hybrid Algorithm Combining Ant Colony Optimization
Algorithm with Particle Swarm Optimization”, Proceedings of
the 25th Chinese Control Conference, Harbin, 7-11 August,
2006.

Shyam Padia et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 6 (5) , 2015, 4228-4234

www.ijcsit.com 4234

